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INTRODUCTION

The theory of controllability and observability has been
developed, one might almost say reluctantly, in response to problems
generated by technological science, especially in areas related to
control, comﬁunication, and computers. It seems that the first
conscious steps to formalize these matters as a separate area of
(system-theoretic or mathematical) research were undertaken only as
late as 1959, by KAIMAN [1960b-c]. There have been, however, many
scattered results before this tiﬁe (see Section 12 for some historical
comments and references), and one might confidently assert today that
some of the main results have been discovered, more or less independ-
ently, in every country which has reached an advanced stage of
"development" and it is certain that these same results will be
rediscovered again in still more places as other-countries progress
on the road to'development.

With the perspective afforded by ten years of happenings in
~ this field, we ought not hesitate to make some guesses of the signi-
ficance of what has been accomplished. I see two main trends:

(i) The use of the concepts of controllability and observability
to study nonclassical questions in optimal control and optimal estima-
tion theory, sometimes as basic hypotheses securing existence, more
éften as seemingly technical conliitions which allow & sharper statement
of results or shorter proofs.

(ii) Interaction between the concepts of controllability and

observability and the study of structure of dynamical systems, such
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as: formulation and solution of the problem of realization,
canonical forms, decomposition of systems.

The first of these topics is older and has been studied
primarily from the point of view of analysis, although the basic
- lemma (2.7 ) is purely algebraic. The second group of topics
may be viewed as "blowing up" the ideas inherent in the basic
lemma (2.7 ), resulting in a more and more strictly algebraic point
of view.

There is active research in both areas.

In the first, attention has shifted from the case of systems
governed by finite-dimensional linear differential equations with
constant coefficients (where success was quick and total) to systems
governed by infinite-dimensional linear differential equations (delay
differential equations, classical types of partial differential
equations, etc.), to finite-dimensional linear differential equa-
tions with time-dependent coefficients, and finally to all sorts
and subsorts of nonlinear differential equations. The first two
topics are surveyed concurrently by WEISS [1969] while MARKUS [1965]
looks at the nonlinear situation.

My own current interest lies in the second stream, and these
lectures will deal primarily with it, gfter a rather hurried over-
view of the general problem and of the "classical" results.

Let us take a quick look at the most important of these “classical"

results. For convenience I shall describe them in system-theoretic
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(rather than conventional pure mathematical) language. The mathe-
matically trained reader should have no difficﬁlty in converting
them into his preferred framework, by digging a little into the
references.

In area (i), the most important results are probably those
which give more or less explicit and computable results for control-
lability and observability of certain specific classes of systems.

Beyond these, there seem to be two main theorems:

THEOREM A. A real, continuous-time, n-dimensional, constant,

linear dynamical system X has the property "every set of n

eigenvalues may be produced by suitable state feedback" if and

only if X 1is completely controllable.

The central special case is treated in great detail by KALMAN,
FALB, and ARBIB [1969, Chapter 2, Theorem 5.10]; for a proof of the
general case with background comments, refer to WONHAM [1967]. As
a particular case, we have that every system satisfying tﬁe hypotheses
of the theorem can be "stabilized" (made to have eigenvalues with
negative real parts) via a suitable choice of feedback. This result
is the "existence theorem" for algorithms used to construct control
systems for the past three decades, and yet a conscious formulation
éf the problem and its mathematical solution go back to about 1963!
(See Theorem D below.) The analogous problem for nonconstant linear
systems (governed by linear differential equations with variable

coefficients) is still not solved.
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THEOREM B. ("Duality Principle") Every problem of control-

lability in a real, (continuous-time, or discrete-time), finite-

dimensional, constant, linear dynamical system is equivalent to

a controllability problem in a dual system.

This fact was first observed by KAIMAN [1960a] in the solution
of the optimal stochastic filtering problem for discrete-time
systems, and was soon applied to several problems in system theory by
KATIMAN [1960b-c]. See also many related comments by KAIMAN, FALB,
and ARBIB [Chapters 2 and 6, 1969]. As a theorem, this principle
is not yet known to be valid outside the linear area, but as an
intuitive prescription it has been rather useful in guiding system-
theoretic research. The problems involved here are those of fomula-
tion rather than proof. The basgic difficulties seem to point>toward
algebra and in particuvlar  category theory. System-theoretic
duality, like the categoric one, is concerned with "reversing
arrows". See Section 10 for a modern discussion of these points
and a precise version of Theorem B.

Partly as a result of the questions raised by Theorem B and
partly because of the algebraic techniques needed to prove Theorem
A and related lemmas, attention in the early 1960's shifted toward
gertain problems of a structural nature which were, somewhat sur-
prisingly at first, found to be related to controllability and

observability. The main theorems again seem to be two:

THEOREM C. (Canonical Decomposition) Every real (continuous-

time or discrete-time), finite-dimensional, consi2vt, linear dynamical
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system may be canonically decomposed into four parts, of which only

one part, that which is completely controllable and completely observ-

able, is involved in the input/output behavior of the system.

The proof given by KAIMAN [1962] applies to nonconstant systems
only under the severe restriction that the dimensions of the sub-
space of all controllable and all unobservable states is constant
on the whole real line. The result repfesented by Theorem C is far from
definitive, however, since finite-dimensional linear, :cnconstént systems
admit at least four differens canonical decompositicng: it is
possible and fruitful to dualize the notions of controllability
and observability, thereby arriving at four properties, presently
called
reachability and controllability
as well as
‘constructibility* and observability.
(See Section 2 definitions.) Any combination of a property from
the first list with a property from the second list gives a canoni-
cal decomposition result analogous to Theorem C. The complexity of
the situation was first revealed by WEISS and KAIMAN [1955]; this
paper contributed to a revival of interest (with hopes of success)
in the special problems of nonconstant linear systems. Recent

*WEISS [1969] uses "determinability" instead of constructi-
bility. The new terminology used in these lectures is not yet
entirely standard.
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progress is surveyed by WEISS [1969]. Intimately related to the |
canonical structure theorém, and in fact necessary to fully clarify
the phrase "involved in the input/output behavior of the system') is

the last basic result:

THEOREM D. (Uniqueness of Minimal Realization) Given the

impulse-response matrix W of a real, continuous-time, finite-

dimensional, linear dynamical system, there exists a feal, continuocus-

time, finite-dimensional, linear dynamical system Zw which

" (a) realizes W: that is, the impulse-response matrix of

EW is equal to W;

(b) has minimal dimension in the class of linear systems

satisfying (a);

(c) is completely controlleble and completely observable;

(d) is uniquely determined (modulo the choice of a basis

at each t for its state space) by requirement (a)

together with (b) or, independently, by (a) together with

(c).

In short, for any W as described above, there is an "essentially

unigue" X% of the same "type" which satisfies (a) through (c).

COROLLARY 1. If W comes from a constant system, there is a

constant % which satisfies (a) through (c), and is uniquely

determined by (a) + (b) or (a) + (c) (modulo a fixed choice of

basis for its state space).
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COROLIARY 2. All claims of Corollary 1 continue to hold if

"impulse-response matrix of a constant, finite-dimensional system"

is replaced by "transfer function matrix of a constant, finite-

dimensional system".

The first general discussion of the situation with an equiva-
lent statement of Theorem D is due to KAIMAN [1963b, Theorems T
and 8]. (This paper does not include comnplete proofs, or even
an explicit statement of Corollaries 1 and 2, although they are
implied by the general algorithm given in Section 7. An edited
version of the original unpublished proof of Theorem D is given
in KATMAN, FALB, and ARBIB [1969, Chapter 10, Appendix C].)

These results are of great importance in'engineering system
theory since they relate methods based on the Laplace transform
(using the transfer function of the system) and the time-domain
methods based on input/output data (the metrix W) to the state-
variabl: (dynamical system) methods developed in 1955-19€0. 1In
fact, by Corollary 1 it follows that the two methods mmst yield
identical results; for instance, starting with a constant impulse-
response matrix W, property (c) implies that the existence
of a stable control lay is always assured by virtue of Theorem A.
Thus it is only after the development represented by Theorems A-D
that a rigorous justification is obtained for the intuitive design
methods used in control engineering.

As with Theorem C, certain formulational difficulties arise

in connection with a precise definition of a "nonconstant linear
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dynamical system". Thus, it Seems preferable at present to replace
in Theorem D "impulse-response matrix W" by "weighting pattern W"
(or "abstract input/output map W") ‘and "complete controllability™
by "complete reachability". The definitive form of the 1963 theorem
evolved through the works of WEISS and KAIMAN [1965], YOULA [1966],
and KAIMAN; a precise formulation and modernized proof of Theorem D
in the weighting pattern casé was given recently by KAIMAN, FALB,
and ARBIB [1969, Chapter 10, Section 13.] A completely general
'discussion of what is meant by a "minimal realization" of a non-
constant impulse-response matrix involves mahy technical complica-
tions due to the fact that such a minimal realization does not

exist in the class of linear differential equations with "nice"
coefficient functions. For the current status of this problem,
consult especially DESOER and VARAIYA [1967], SILVERMAN and MEADOWS
[1969], KAIMAN, FAIB, and ARBIB [1969, Chapter 10, Section 13] and
WEISS [1969].

From the standpoint of the present lectures, by far the most
interesting consequence of Theorem D is its influence, via efforts
to arrive at a definitive proof of Corollary 1, on the development
of the algebraic stream of system theory. The first proof of this
important result (in the special case of distinct eigenvalues) is
that of GILBERT [1963]. Immediately afterwards, a general proof
was given by KAIMAN [1963b, Section 7]. This proof, strictly
computational and. linear algebraic in nature, yields no theoreti-

cal insight although it is useful as the basis of a computer algorithm.
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Using the classical theory of invariant factors, KAIMAN f1965a]
succeeded in showing that the solution of the minimal realization
prbblem can be effectively reduced to the classical invariant-
factor algorithm. fhis resﬁlt is of great theoretical interest
since‘it strongly suggests the now standard module theoretic
approach, but it does not lead to a simple proof of Corollary 1
and is not a practical method of computation.
Thg best known proof of Corollary 1 was obtained in 1965 by
B. L. Ho, with the aid of a remarkable algorithm, which is equally important
from a theoretical and computational viewpoint. The early formula-
tion of the algorithm was described by HO and KAIMAN [1966], with
later refinements discussed in HO and KAIMAN [1969], KAIMAN, FALB,
and ARBIB [1969, Chapter 10, Section 11] and KAIMAN [1969c].
Almost simultaneously with the work of B. L. Ho, the basic results
were discovered independently also by YOULA and TISSI [1966] and
by SILVERMAN [1966]. The subject goes back to the 19th century
and centers around-the theory of Hankel matrices; however, many
of the results just referenced seem to be fundamentally new. This
field is currently in a very active stage of development. We shall
discuss the essential ideas involved in Sections 8-9. Many other
topics, especially Silverman's generalization of the algorithm to
nonconstant systems unfortunately cannét be covered due to lack of

time.



R.E,Kalman

Acknowledgment

It is a pleasure to thank C. I. M. E. and its organizers,
especially Professors E. Bompiani, E. Sarti, and E. Belardinelli,
for arranging a special conference on these topics. The sunny
gkies and hospitality of Italy, along with Bolognese food played
a subsidiary but vital part in the success of this important

gathering of scientists.



R.E.Kalman
1. CLASSICAL AND MODERN DYNAMICAIL, SYSTEMS

In mathematics the term dynamical system (synonyms: topological

dynamics, flows, abstract dynamics, etc.) usually connotes the action

of a one-parameter group T (the reals) on a set X, where X 1is
at least a topological space (more often, a differentiable manifold)
and the action is at least continuous. This setup is physically
motivated, but in a very old-fashioned sense. A "dynamical system"
as just defined is an idealization, generalization, and abstraction
of Newton's world view of the Solar System as described via a finite set of
nonlinear ordinary differential equations. These equations represent
the positions and momenta of the planets regarded as point masses and
are completely determined by the laws of gravitation, i.e., they do
not contain any terms to account for "external" forces that may act
on the system.

Interesting as this notation of a dynamical system may be (and
is!) in pure mathematics, it is much too limited for the study of
those dynamical systems which are of contemporary interest. There
are at least three different ways in which the classical concept
must be generalized:

(i) The time set of the system is not necessarily restricted
to the reals;

(ii) A state x € X of the system is not merely acted upon by
the "passage of time" but also by inputs which are or could be mani-

pulated to bring about a desired type of behavior;
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(iii) The states of the system cannot, in general, be observed.
Rather, the physical behavior of the system is manifested through
its outputs which are many-to-one functions of the state.

The generalization of the time set is of minor interest to us

here. The notions of input and output, however, are exceedingly

fundamental; in fact, controllability is related to the input and
observability to the output. With respect to dynamical systems in
the classical sense, neither controllability nor observability are
meaningful concepts.

A much more detailed discussion of dynamical systems in the modern
sense, together with rather detailed precise definitions, will be
found in KAIMAN, FALB, and ARBIB [1969, Chapter 1].

From here on, we will use the term "dynamical system" exclusively
in the modern sense (we have already done so in the Introduction).

The following symbols will have a fixed meaning throughout the

paper:
(T = time set,
U = set of input values,
X ; state set,
(1.1) Y = set of output values,
= input functions,
¢ = transition map,
\_ T = readout map.

The following assumptions will always apply (otherwise the sets

above are arbitrary):
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('T = an ordered subset of the reals 5,
@ = class of functions T — U such that
(i) each function o is undefined outside some
(1.2) ﬂ finite interval J CT dependent on w;
(i1) if J Mg, = @ there is a function
w € Q which agrees with o on {D and
L with @' on J,.

For most curzoses later, T will be equal to E_: (ordered)
abelian group of integers; U, X, Y, @ will be linear spaces; "unde-
fined" can be replaced by "equal to O"; and "functions undefined out-
side a finite interval" will mean the same as "finite sequences”.

The most general notion of a dynamical system for our present

needs is given by the following

(1.3) DEFINITION. A dynamical system % 1is a compoéite object

consisting of the maps @, nm defined on the sets T, U, Q, X, Y

(as above):

P TXTXXXO o X,
: (65 1, x, W) & o(t; T, x, W)

undefined whenever t > T;

e T XX > Y: (t, x) b 1(t, x).

The transition map ¢ satisflec the following assumptions:

(1.4) o(t; t, x, ®) = x;
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(1-5) CP(tS T, X (D) = (P(ti S, CP(SS T, %X “3); ‘D)i
(1.6) if o = o on [7, t], then for all s € [, t]
‘P(S; T, X, (.L)) = CP(SS T, X '1)')-

The definition of a dynamical system on this level of generality
should be regarded only as a scaffolding for the terminology; interesf—
ing mathematics begins only after further hypotheses are made. For
instance, it is usually necessary to endow the sets T, U, ©, X, and

Y with a topology and then require that ¢ and 1 be continuous.

(1.7) EXAMPLE. The classical setup in topological dynamics may

be deduced from our Definition (1.3) in the following way. Let

T = 5 = reals, regarded as an abelian group under the usual addition

and having the usua} topology; let { consist only of the nowhere-

definéd function; let X Dbe topologiéal space; disregard Y and 7 .entirely;

define ¢ for all t, v € T and write it as
ot; ©, x, ®) = x(t - 1),

that is, a function of x and t - v alone. Check (1.4-5); in

the new notation they become
x0 = x and x-(s +1t) = (x*s)-t.
Finally, require that the map (x, t) = x°*t be continucus.

(1.8) INTERPRETATION. The essential idea of Definition (1.3) is

that it axiomatizes the notion of state. A dynamical system is informally
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a rﬁle for state transitions (the function ®), together with suitable
means of expressing the effect of the input on the stafe and the effect
of the state on the output (the function 7). The map ¢ 1is verbalized
as follows: "an input ®, applied to the system X in state x at
time T produées the stata @(t; T, X, ®) at time t." The peculiar
definition of an input function ® is used here mainly for technical
convenience; by (1.6) only equi&alence classes of inputs agreeing over

[v, t] enter into the determination of o(t; T, x, ®). "o not defined"

at t means no input acts on X at time t.

The pair (1, x) € T X X will be called an event of a dynamical
system Z.
In the sequel, we shall be concerned primarily with systems which

are finite-dimensicnal, linear, and continuous-time or discrete-time.

Often these systems will be also real and constant (= stationary or
time-invariant). We leave the precise definition of these terms in
the context of Definition (1.3) to the reader (consult KALMAN, FALB,
or ARBIB [1969, Chapter 1] as needed) and proceed to make some ad hoc
definitions without detailed explanation.

The following conventions will remain in force th}oughout the

lectures whenever the linear case is discussed:

(1.9) Continuous-time. T=R U=R, X-=

@ = all continuous functions R —

side a finite interval.

(1.10) Discrete-time. T= %, K = fixed field (arbitrary),
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U=k X=k% Y=k Q=all functions
Z - K" which are zero for all but a finite number of

their arguments.

Now we have, finally,

(1.11) DEFINITION. A real, continuous-time, n-dimensional, linear

dynamical system X 1is a triplé of continuous matrix functions of

time (F(-), G(-), H(-)) yhere

F(*):
G(e):
H(-):

)]

- {n X n matrices over R}

— {n Xm matrices over R},

1}=]

*
- {p X n matrices over RJ.

li=¢}

These maps determine the equations of motion of % in the following

manners

I

dx/at F(t)x + a(t)o(t),

(1.12)

I

y(t) = H(t)x(t),

vhere t € R, x€ R, o(})€R, and y(t) € R

To check that (1.12) indeed makes X into a well-defined dynamical
system in the sense of Definition (1.3), it is necessary to recall the
basic facts about finite systems of ordinary linear differential equations

with continuous coefficients. Define the map

@F(t, T):

[}>e]
X

R - {n Xn matrices over R}

to be the family of n'X matrix solutions of the linear differential

=]
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equation : , .
dx/at = F(t)x, x€R
subject to the initial condition

(1, ¥) = I = unit matrix, T € R.

Then ?F is of class Cl in both arguments. It is called the

transition matrix of (the system X whose "infinitesimal® transition

matrix is) F(-). From this standard result we get easily also the

fact that the transition map of I 1is explicitly given by

(1.13) o(t; =, x, w) = q>F(t, T)x + [;" @F(t, s)G(s)G'(s)@%‘(t, s)ds
while the readout map is given by

(1.28) n(t, x) = H(t)x.

It is instructive to verify that ¢ dindeed depends only on the equiva-
lence class of w's which agree on [7, t].
In view of the classical terminology "linear differential equa-

tions with constant coefficients", we introduce the nonstandard

(1.15) DEFINITION. A real, continuous-time, finite-dimensional
N

linear dynamical system X = (F(-), G(-), H(-)) is called constant

iff all three matrix functions are constant.

In strict analogy with (1.15), we say:

(1.16) DEFINITION. . A discrete-time, finite-dimensional, linear,

constant dynamical system ¥ over K is a triple (F, G, H) of
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nXn, nXm pXn matrices over the field K. These maps deter-

' . 3 al . . I‘ :
mine the equations of motion of 2 in the following manne

x(t + 1)
(1.17) {
y(t)

Fx(t) 3 G(l)(t),

Hx(t),

1l

m

where t €2, x€X, o(t) €K', and y(t) € ¥°

In the sequel, we shall use the notations (Fr, G, =) or
F, -, H) to denote systems possessing certain properties which

are true for any H or G.

Finally, we adopt the following convention, which is already

implicit in the preceding discussion:

(1.18) DEFINITION. The dimension n of a dynamical system

L is equal to the dimension of -XZ as a vector space.
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2. STANDARDIZATION OF DEFINITIONS AND "CLASSICAT!' RESULTS

. In this section, we shall be mainly interested in finite-
dimensional linear dynamical systems, although the first two
definitions will be quite general.

Let 2 be an arbitrary dynamical system as defined in
Section 1. We assume the following slightly special property:

There exists a state x* and an input «*¥ such that
o(t; 7, x¥, w¥) = x* forall t, T€ T and t > 7.

For simplicity, we write x* and w¥ as 0. (When X
and § have additive structure,- 0] will_have the usual mean-
ing.) The next two definitions refer to dynamical systems
with this extra, property.

(2.1) DEFINITION. An event (7, x) is controllable iff-§

there exists a t € T andan ®w € @ (both t and ® may depend

on (7, x)) such that
o(t; T, x, ®) = O

In words: an event is controllable iff it can be ‘transferre
+to O in finite time by an appropriate choice of the input function
w. Think of the path from (7, x) to (t, O) as the graph of a

function defined over [7, t].

§

The technical word iff means if and only if.
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Consider now a reflection of this graph about T. This
suggests a new definition which is a kind of "adjoint" of the

definition of controllability:

(2.2) DEFINITION. An event (7, x) is reachable iff there

jsan s€T andan w € Q (both s and o may depend on

(1, x)) such that
x = CP(T; s, 0, (L)).

We emphasize: controllability and reachability are entirely
different concepts. A striking example of this fact is encountered
below in Proposition (L.26).

We shall néw review briefly some well-known criteria for and

relations between reachability and controllability in linear systems.

(2.3) PROPOSITION. In a real, continuous-time, finite-dimensional,

linear dynamical system I = (F(+), G(+), - ), anevent (7, x) is

(a) reachable if and only if x € range W(s, ) for
’ tor

some s € R, s < 7, where
fi(s, v) = [" 27, 0)6(0)6"(0) ol(7, o)do
. S

(b) controllable if an only if x € range W(t, t) for

some t € R, t> T, where
Wi, t) = JP o.(7, 8)6(s)G"(s) (s, s)ds.
i L T

The original proof of (b) is in KAIMAN [1960b]; both cases

are treated in detail in KATMAN, FALB, and ARBIB [1969, Chapter 2,
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Section 2]. Note that if G(*) 4is identically zero on (- =, T)
we cannot have reachability, and if G(+) is identically
zero on (T, + ©) we cannot have controllability.

For a constant system, the integrals above depend only on

the difference of the limits; hence, in particular
Wiz, t) = W(er - t, 7).
So we have

(2.4) PROPOSITION. In a real, continuous-time, finite-dimensional,

linear, constant dynemical system an event (7, x) is reachable

for all T if and only if it is reachable for one T; an evant

is reachable if and only if it is controllable.

From (2.3) one can obtain in a straightforward fashion also

the following much stronger result:

(2.5) THEOREM., In a real, continuous-time, n-dimensional,

linear, constant dynamical system X = (F, G, -) a state x

is reachable (or, equivelently, controllable) st any T € R

if and only if

x € span (G, FG, ... ) C .

.
-}

=g

if this condition is satisfied, we can choose s =7 -0, t =17+ 59,

with & > O arbitrary. (The span of a sequence of mebtrices is to
be interpreted as the vector space generated by the columns of

these matrices.)
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A proof of (2.5) may be found in KATMAN, HO, and NARENDRA
[1963] and in KAIMAN, FALB, and ARBIB [1969, Chapter 2, Section
3]. A trivial but noteworthy consequence is the fact that the

definition of reachable states of T is "co8rdinate-free":

(2.6) COROLIARY. The set of reachable (or controllable)

states of 2 1in Theoren (2.5) 1s a subspace of the real vector

space XZ’ the state space of ZXZ.

Very often the attention to individual states is unnecessary
and therefore many authors prefer to use the terminology "2 is
completely reachable at 1" for "every event (7, x), T = fixed,
x € X, 1is reachable", or g coméletely reachable" for‘"every
event in 2 1is reachable",-etc. Thus (2.5), %ogether wifh the

Cayley-Hamilton theorem, implies the

(2.7) BASIC LEMMA. A real, continuous-time, n-dimensional,

linear, constant dynamical system X = (F, G, -) is completely

reachable if an only if

n-1

(2.8) rank (G, FG, ee., F' "G) = n.

Condition (2.8) is very well-known; it or equivalent forms of
it have been discovered, explicitly used, or implicitly assumed by

‘many authors. A trivially equivalent form of (2.7) is given by

(2.9) COROLIARY 1. A constant system Z = (F, G, -) is

completely reachable if and only if the smallest F-invariang

subspace of X;. containing (21l column vectors of) G is Xs.

itself.
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A useful variant of the last fact is given by

(2.10) COROLLARY 2. (W. Hahn) A constant system = = (F, G, -)

is completely reachable if and only if there is no nonzero eigen-

vector of F which is orthogonal to (every column vector of) G.

Finally, let us note that, far from being a technical condi-
tion, (2.5) has a direct system-theoretic interpretation, as

follows:

(2.31) PROPOSITION. The state svace XZ of a real, continuous-

time, n-dimensional, linear, constant dynamical system X = (F, G, 5)

may be written as a direct sum

= @
XZ _ Xl X2’

which induces a decomposition of the equations of motion as (obvious

notations)
dx /dt = Fp %) + Fx, + Gu £k,
(2.12)
ax /dt = F,o %,
The subsystem Zl = (Fll’ Gl’ -) is completelv reachable. Hence
a state x = (xl, x2) € X5 1is reachable if and only if x, = O.

PROOF's We define Xl to be the set of reachable states

of X; by (2.5) this is an F-invariant subspace of XZ' Hence, by

finite-dimensionality, Xl is a direct summand in XZ' By construc-

tion, every state in X. 1s reachable, and (every column vector of)

E
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G belongs to X The F-invariance of X. implies that

1’ 1

Fll = 0, which implies the asserted form of the equations of

motion. O

(2.13) REMARK. Note that X2 is not intrinsically defined
(it depends on an arbitrary choice in completing the direct sum).
Hence to say that "(O, x2) is an unreachable (or uncontrollable)

state if x, # 0" is an abuse of language. More precisely: the

set of all reachable (or controllable) states has the structure of

a_vector svace, bub the set of all unreachable (or uncontrollable)

states does not have such structure. This fact is important to

bear in mind for the algebraic development which follows after
this section and also in the definition of observability and
constructibility below. In general, the direct sum cannot be

chosen in such a way that Fip = O.

While condition (2.8) has been frequently used as a technical
requirement in the solution of various optimal control problems in
the late 1950's, it was only in 1959-60 that the relation between
(2.8) and system theoretic questions was clarified by KAIMAN [1960b-c]
via Definition (2.2) and Propositions (2.5) and (2.11). (See Section
11 for further details.) In other words, without the preceding
- discussion the use of (2.8) may appear to be artificial, but in fact

it is not, at least in problems in which control enters, because,

by (2.12) control problems stated for XZ are nontrivial only with

respect to the intrinsic subspace Xl.
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The hypothesis "constant” is by no means essential for
Proposition (2.11), but we must forego further comments here.

For later purposes, we state some facts here for discrete-
time, constant linear systems analogous to those already developed
for their continuous-time counterparts. The proofs are straight-
forward and therefore omitted (or given later, for illustrative

purposes) .

(2.14) PROPOSITION. A state x of a real, discrete-time,

n-dimensional, linear, constant dynamical system X = (F, G, -)

is reachable if and only if

(2.15) % € span (G, FG, ..., F*lq).

Thus such a system is completely reachable if and only if (2.8)

holds.

(2.16) PROPOSITION. A state x of the system X described

in Proposition (2.14) is controllable if and only if

(2.17) x € span (F_lG, _— F_nG),
where

F G = [x: Fkx = 8 8 = column vectcr of Gl.

(2.18) PROPOSITION. In a real, discrete-time, finite-dimensional,

linear, constant dynamical system £ = (F, G, -) a reachable state

is always controllable and the converse is always true whenever

det F # O.
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Note also that Propositions (2.11) and its proof continue
to be correct, without any modificafion, when "continuous-time"
is replaced by "discrete-time".

Now we turh to a discussion of observability.

The original definition of observability by KAIMAN™ [1960b,
Definition (5.23)] was concocted in such a way as to take advan-
tage of vector-space duality. The conceptual problems surround-
ing duality are easy to handle in the linear case but are still
by no means fully understood in the nonlinear case (see Section
10). In order to get at the main facts quickly, we shall consider
here only the linear case and even then we shall use the under-
lying idea of wvector-space dvality in a rather ad-hoc fashion.
The reader wishing to do so can easily turn our remarks into a
strictly dual treatment of facts (2.1)-(2.12) with the aid of

the setup introduced in Section 10.

(2.19) DEFINITION. An event (7, x) in a real, continuous-

time, finite-dimensional, linear dynamical system % = (F(+), -, H(*))

is unobservable iff

H(s)@F(s, T)x = O for all s € [1, «).

(2.20) DEFINITION. With respect to the same system, an event

(1, x) is unconstructible* iff

*In the older literature, starting with KAIMAN [1960b,
Definition (5.23)], it is this concept which is called "observability'.
By hindsight, the present choice of words seems to be more natural
to the writer.
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H(o)@y(0, ©)x = O for all o€ (- =, 7l.

The motivation for the first defirition is obvious: the
"occurrence" of an unobservable event cannot be detected by look-
ing at the output of the system after time <. (The definition
subsumes ® = 0, but this is no loss of generality because of
linearity.) .The motivation for the second definition is less
obvious but is in fact strongly suggested by statistical filtering
theory (see Section 10). In any case, Definition (2.21) comple-
ments Definition (2.20) in exactly the same way as Definition (2.1)
complements Definition (2.2).

From these definitions, it is very easy to deduce the follow-

ing criteria:

(2.21) PROPOSITION. In a real, continuous-time, finite-dimensional,

linear dynamicel system X = (F(-), -, H(:)) an event (7, x) is

(a) unobservable if and only if x € kernel M(t, t)

for all t € R, t > 7, where
fi(r, 8) = [° al(s, D)H(e)H(s)oy(s, T)ds;
T

(b) wunconstructible if and only if x € kernel M(s, T)

for all s € R, s <7, where

M(s, 1) = [°¥ @%(0, T)H'(G)H(G)@F(U, T)do.
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PROOF. Part (a) follows immediately from the observation:
x € kernel M(t, t) © H(s)@F(s, T)x = 0 for all s € [7, t]. Part

(b) follows by an analogous argument. O

(2.22) REMARK. ILet us compare this result with Proposition (2.3),
and let us indulge (only temporarily) in abuses of language of the

following sort:*

(1, x) = unreachable & x € kernel W(t, t)
for all t > 7
and
(t, x) = observable €& x € range M(7, t)

for some t > T.

From these relations we can easily deduce the so-called "duality
rules"; that is, problems involving observability (or constructibil-
ity) are converted into problems involving reachability (or control-
lability) in a suitably defined dual system. See KAIMAN, FALB,

and ARBIB [1969, Chapter 2, Proposition (6.12)] and the broader

discussion in Section 10.

We will say, by slight abuse of language, that a system is

completely observable whenever O is the only unobservable state.

Thus the Basic Lemma (2.7) "dualizes" to the

(2.23) PROPOSITION. A real, continuous-time or discrete-time,

n-dimensional, linear, constant dynamical system £ = (F, - , H)

*¥A11 this would be strictly correct if we agreed to replace
"direct sum" in Proposition (2.11) and its counterpart (2.25) by
"orthogonal direct sum"; but this would be an arbitrary convention
which, while convenient, has no natural system-theoretic justifica-
tion. - .Reread Remd¥k (2.13).
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is completely observable if and only if

(2.2%)  rank (@', F'H', ..., ()Y ) = n.

By duality, complete construetibility in a continuous-time
system is équivalent to observability; in a discrete-time system
this is not true in general but it is true when det F # O.

It is easy to see also that (2.11) "dualizes" to:

(2.25) PROPOSITION. The state space XZ of a real, continuous-

time or discrete-time , n-dimensional, linear, constant dynamical

system Z = (F, -, H) may be written as a direct sum

= @
XZ Xl X2

and the equations of X are decomposed correspondingly.as

dxl/dt = Fy %
dxe/dt = Egax +E%,
y(t) = Héxg(t).

PROOF. Proceed dually to the proof of Proposition (2.11),

beginning with the definiticn of X. as the set of all unobservable

i
states of Z. 0

Combining Propositions (2.11) and (2.25) gives Theorem C as in
KATMAN [1962].

This completes our survey cf the "classical" results related
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to reachability, controllability, observability, and
éonstructibility.

The remeining lectures will be concerned exclusively with

discrete-time systems. The main motivation for the succeeding

developments will be the algebraic criteria (2.8) and (2.24)
as well as a deeper exsmination of Theorems C and D of the

Introduction.
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3. DEFINITION OF STATES VIA NERODE EQUIVALENCE CLASSES

A classical dynamical system is essentially the action of the
time set T (= feals) on the states X. In other words, the
states are acted on by .an abelian group, namely (5 + usual
definition of addition). This is a trivial fact, but it has deep
consequences. A (modern) dynamical system is the action of the

inputs © on X; in exact analogy with the classical case, to

the abelian structure on T there corresponds an (associative

but noncommutative) semigroup structure on Q. The idea that @

always admits such a structure was apparently overlooked until
the late 1950's when it became fashionable in automata theory
(school of SCHUTZENBERGER). This seems to be the "right" way
of translating the intuitive notion of dynamics into mathematics,
and it will be fundamental in our sucéeeding investigations.

It is convenient to assume from now on, until the end of

these lectures, that

(3.1) T = time set = Z = additive (ordered) group of

integers.

Since we shall be only interested in constant systems from

here on, we shall adopt the following normalization convention:*

*In the discrete-time nonconstant case, we would have to deal
with Z copies of (I, each normalized with respect to a different
particular value of 7T € Z.
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(3.2) No element of 9 is defined for t> 1 = O.

In view of (3.2), we can define the "length" |w| of o by

|w|' = max (-t € Z: o is not defined for-any s < t}.

Before defining the semigroup on €, we introduce another

fundamental notion of dynamics: the (left) shift operator g

defined for all ¢ >0 in Z by

(3.3) cg: Q- 0 o ogm: t - o(t + q).

Note that the definition of ¢, is compatible with the normaliza-

Q
tion (3.2).

T Jmme, = empty for ®, ®' € @, we define the join

of w and ' as the function

B {’w on {D,

o' on J ;%
) [V

(3.4) ® v o

When Q has an additive structure, then we replace « « ' by

(3.9) DEFINITION. There is an associative operation

ot 0 XQ > Q, called concatenation, defined by

|v]

o (w, V) b 9

(va-

Note that, by (3.2) through (3.4), o is well defined.

w+ w'.

Note also that the asserted existence of concatenation rests

on the fact that Q is made up of functions defined over finite

intervals in T. We might express the content of (3.5) also as:

8 1is a semigroup with valuation, since evidently Iwovl = |w| +

[v].
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In view of (3.5), it is natural to use an abbreviated notation*

also for the transition function, as follows:
(3.6) Xold = (P(O; - ley X, W)

Now we come to an important nonclassical concept in dynamical
systems, whose evolution was strongly influenced by problems in

communications and automata theory: a discrete-time constant

input/output map

(3.7) f: 05 Y o flo) = y(1)

We interpret this maﬁ as follows: y(1) is the output of some
system X (say, a digital computer) when X is subjected to .
the (finite) input sequence , assuming that 2 is some fixed
initial equilibrium state before the application of w. This
definition automatically incorporates the notions of "discrete-
time" as well as "causal" or "dynamics" (the latter because

y(t) is not defined for t < 1). However, (3.7) does not

clearly imply "constancy" (implicitly, however, this is clear from
the normalization assumption (3.2) on Q). To make the definition

more forceful, we extend f to the map

. (3.8) f: Q- I = YXY ... (infinite cartesian product)

powp (£0), fog@), o) = (@), ¥(2), ... ).

Interpretation: f gives the output sequence v = (y(1), y(2), ...
of the system X after t = 0 resulting from the application of an

*Observe that xow 1is the strict analog of the notation xt
customary in topological dynamics. The action of @ on x satis-
fies xo(woV) = (xow)ov in view of (1.5)-
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input» @ which stops at t = 0.
This definition expressés causality more forcefully and
incorporates constancy, provided we define the (left) shift
operator o, on I' so as to be compatible with (3.3). So,

r
for any v >0, 7€ Z, let

(3.9) opt T Tt v oo bt Y(t + 1)

:(y(1), y(2), oo )b (y(z+1), y(x+2), ...)

Note: the operator % "appends" an undefined term at O, the
operator o, "discards" the term y(1).

Now, dropping the bar over f, we adopt

(3.10) DEFINITION. A discrete-time, constant input/output map

(of some underlying dynamical system %) is any map f such that

the following diagram

Q f——>r
g a.
i PR
f

is commutative. We sey that f 1is lincar iff it is a K-vector

Space homomorphism,

It will be convenient to regard (3.10) as the external
. definition of a dynamical system, in contrast to the internal
definition set up in Section 1.

Intuitively, we should think of f as a highly idealized
kind of experiméntal data; namely, f incorporates all possible

information that could be gained by subjecting the underlying
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system to experiments in which only input/output data is avail-
able. This point of view is related to experimental physics the
same way as the classical notion of a dynamical system is related
to Newtonian (axiomatic) physics. |

The basic question which motivates much of what will follow

can now be formulated as follows:

(3.11) PROBLEM OF REALIZATTION. Given only the knowledge of

f (but of course also of Z, Q, and I') how can we discover,

in a mathematically consistent, rigorous, and natural way, the

properties of the system Z which is supposed to underlie the

given input/output map f?

This suggests immediately the following fundamental concept:

(3.12) DEFINITION. A fixed dynamical system % (internal

definition, as in Section 1) is a realization of a fixed inpuﬁ/

output map fo iff fo = fzo, that is, fo is identical with

the input/output map of Zo.

In view of the notations of Section 1 plus the special con-

vention (3.6), the explicit form of the realization condition is

simply that
$(3.13) £ = n; (@ (05 - lo], % )

for all @ Q. The symbol * stands for an arbitrary equili-
brium state in which Zo remeins, by definition, until the

application of w. (Later we simply take * to be 0.)
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To solve the realization problem, the critical step is to
induce a definition of X (of some Zo) from the given f .
It is rather surprising that this step turns out to be trivial,
on the abstract level. (On the concrete level, however, there afe
many unsolved problems in actually computing what X is. In
Section 8, we shall solve this problem, too, but only in the
linear case.) The essential idea seems to have been published

first by NERODE [1958]:

(3.14) DEFINITION. Make the concatenation semigroup Q into

a monoid by adjoining a neutral element ¢ (which is the nowhere-

defined function on é)' Then o =, ! (read: o is Nerode

equivalent to ! with respect to f) iff

f(wov) = f(w'ov) for all Vv E€ Q.

There are many intuitive, physical, historical, and technical
reasons (which are scattered throughout the literature and concer:-
trated especially strongly in KAIMAN, FALB, and ARBIB [1969]) for

using this as the

(3.15) MAIN DEFINITION. The set of equivalence classes under

f,
input/output map f.

denoted as X, = {(w)f: w € Q}, is the state set of the

Let us verify immediately that (3.15) makes mathematical

sense:
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(3.16) © PROPOSITION. For each linear, constant input/output map

f  there exists a dynamical system qu such that

(a) T, realizes fj
(b) xzf = X,

PROOF. We show how to induce X given f. We

f’
define the state set of Zf by (b). Further, we define the
transition function of Zf by
(3.17) KoV = (ua)fov g (coov)f for all VE€ Q, x € Xpe

We must check that o on the left of % is well defined (note
two different uses of o!), that is, independent of the repre-
sentation of x as- (w)f. This follows trivially from (3.14).
Now we define the readout map of Zf by
(3.18) nzf:. Xp = Y: (w)f}-—) fw) (1)
Again, this map is well defined since we can take V = (¢ as a

special case in (3.14). Then

T}Zf(xov) = T}Zf((wov)f) = f((DOV),

and the realization condition (3.6) is verified. Hence claim (a)

. is correct. O

(3.19) COMMENTS. In automate theory, Z, is known as the

s reduced form of any system which realizes f. Clearly, any two
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reduced forms are isomorphic, in the set-theoretic sense, since

the set X, is intrinsically defined by f. (This observation
is a weak version of Theorem D of the Introduction; here "unigque-
ness" means "modulo a permutation of the labels of elements in

is completely reachable

the set Xf”.) Notice also that zt,

since, by Definition (3.15,, every element x = (w)f of X,

is reachaole via any element !'- in the Nerode equivelencs class

(m)f. As to observability of £ see Section iO.

f)
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b, MODULES 'INDUCED BY LINEAR INPUT/OUTPUT MAPS

We are now ready to embark on the main topilcs of these lectures.
It is assumed that the reader is conversant with moderﬁ algebra (espe-
Vcially: abelian groups, commutative rings, fields, modules, the ring
of polynomialé in one variable,and the theory of elementary divisors),
on the level of, say, VAN DER WAERDEN, LANG [1965], HU [1965] or
ZARISKI and SAMUEL [1958, Vol. 1]. The material covered from here
on dates from 1965 or later.

Standing assumptions until Section 10:

(4.1) A1l systems & = (F, G, H) are discrete-time, linear,

constant, defined over a fixed field K (but not necessarily

finite-dimensional).

Our immediate objective is to provide the setup and proof for the

(k.2) FUNDAMENTAL THEOREM OF LINEAR SYSTEM THEORY. The natural

state set Xf associated with a discrete-time, linear, constant input-

output map f over a fixed field K admits the structure of a finitely

generated module over the ring K[z] of polynomials (with indeterminate

z and coefficients in X).

(k.3) COMMENTS. Since the #ing K[z] will be seen to be related

to the inputs to X, this result has a superficial resemblance to the
fact that in an arbitrary dynamical system 2 the state set XZ admits
the action of a semigroup, namely @ (see (3.8) and related footnote).
It turns out, however, that this action of & on X, which results

from combining the concatenation product in Q with the definition of
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states via Nerode equivalence, is incompatible with the additive
structure of @ [KAIMAN, 1967, Section 3]. Our theorem asserts the
existence of an entirely different kind of structure of X. This
structure, that of a X[z]-module, is not just a consequence of
dynamics, but depends critically on the additive structure on Q

and on the linearity of f. The relevant multiplication is not
(noncommutative) concatenation but (commutative) convolution (because
convolution is the natural product in K[z]); dynamics is thereby
restated inlsuch a way that the tools of commutative algebra become
applicable. In a certain rather definite sense (see also Remark
(4.30)), Theorem (L4.2) expresses the algeﬁraic content of the method
of the Laplace transformation, especially as regards the pracﬁices
developed in electrical engineering in the U.S. during the 1950's.

The proof of Theorem (4.2) consists in a long sequence of canoni-
cal constructions and the verification that everything is well defined
and works as needed.

In view of (4.1) and the conventions made in Section 1, © may

be viewed as a K-vector space and «(t) = O for almost all t €

NN

and all ® € Q. By convention (3.2 ), we have assumed also that
w(t) =0 for all t > 0. As a result, we have that:

(a) o = K'[z] as a K-vector space. Let us exhibit the isomor-

phism explicitly as follows:

(4.%) w = w(t)z_t € K'z].

&z

By (3.2 ), the sum in (4.4) is always finite. The isomorphism
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obviously preserves the K-linear structure on . In the sequel, we
shall not distinguish sharply between ® as a function T — K and

@ as an m-vector polynomial.

(b) @ is a free K[z]-module with m generators, that is,

Q ~ K'[z] also in the K[z]-module sense. In fact, we define the

action of K[z] on Q by scalar multiplication as

e: K[zl XQ o 0 (T, 0) & T

where ﬂml
(4.5) Tow = (a)j € Klzl, § = 1, «ooy m).

|

m

The product of T with the components of the vector w is the
product in K[z]. We write the scalar product on the left, to avoid
any confusion with notation (3.6 ). It is easy to see that the module

axioms are verified;  1s obviously free, with generators”

(4.6) €—j-th position, j = 1, ..., m.

[¢]
Il
Qoocojdt 60O

(c> On O the action of the shift operator Oq is represented

by multiplication by z. This, of course, is the main reason for

introducing the isomorphism (4.4) in the first place.
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(d) Each element of T' is a formal power series in 271, In fact,

(4.4) suggests viewing zt as an abstract representation of - t € Z;
bl

hence we define
- —~ -t o) -1
(1.7) r = ,%Er(t)z € kK [[z "]1.

By (3.8) and (4.1), y(t) € K’ for each t >1 and is zero (or

not defined) for t < 1l. In general the sum is %aken over infiﬁitely mény
nonzero terms; there‘is no question of convergence and the right-hand side
of (4.7) is to be interpreted stictly algebraically as a formal power

series. Since Y(0) is always zero (see (3.8)), we can say also -

that
(e) T' is isomorphic to the K-vector subspace of KP[[z—l]]
(formal power series in 2z~ with coefficients in Kp) consisting

of all power series with O first term.

The first nontrivial construction is the following:

(f) I has the structure of a K[z] module, with scalar

multiplication defined as

(4.8) ot K[z] XT » Tt (T, 1) Ty = W(Gr)ﬁ

This product may be interpreted as the ordinary product of a power
. = -1 . 5

series in z by a polynomial in 2z, -followed by the deletion of

all terms containing no negative powers of z. The verification of

the module axioms is straightforward.
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(g) ‘£ is a K[z] homomorphism. This is an immediate conse-

quence of the fact that f = constant (see (3.10))and that multipli-
cation by 2z corresponds to the left shift operators on Q and UI.

(h) The Nerode equivalence classes of f are isomorphic with

Q/kernel f. This is an easy but highly nontrivial lemma, connecting
Nerode equivalence with the module structure on Q. The proof is an

immediate consequence of tbe formula
(4.9) WeV = z' o+ V.
In fact, by K-linearity of f, (4.9) implies
f(wev) = f(wrov) for all vEQ
if and only if
f(zk-w)_ = f(zk-m') for all k>0 in Z.

The proof of Theorem (4.2) is now complete, since the last

lemma identifies X, as defined by (3.15) with the K[z] quotient

module Q/kernel f.

We write elements of the latter as [w]f = w + kernel f; then

it is clear that X. as a K[z]-modulie is generated by [

since O itself is generated by e

e les wnes [em]f’

1 e & (see (4.6)). Note also

that the scalar product in Q/kernel f is
(%.10) (m, [w]f) b omelo], = [Tol.

The last product above (that in Q) has already been defined in (4.5).
The reader should verify directly that (4.10) gives a well-defined

scalar product.
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(4.12) REMARK. There is a strict duality in the setup used to
define f. From the point of view of homological algebra [MAC IANE
1963], this duality looks as follows. Since every free module is

projective, the natural map

H: Q > Xf: W [cb]f

exhibits Xf as the image of a projective module. On the other

hand, tﬂere is a bijection between the set Xf and the set

H = (o) Cr.

Ef is clearly a K[z]-submodule of I' (with z-f(o) = f(z-w)),

and so Xf and E%‘ are isomorphic also as K[zl-modules. It is

known that I' is an injective module [MAC IANE 1963, page 95,

Exercise 2] So the natural map Xf - Ef: [w]

Xf as a submodule of an injective module. This fact is basic in the

construction of the "transfer function" associated with f (Section 7),

» f(w) exhibits

i

but its full implications are not yet understood at present.

There is an easy counterpart of Theorem (4.2) which concerns a

dynamical system given in "internal" form:

(4.12) PROPOSITION. The state set X; of every discrete-time,

finite-dimensional, linear, constant dynamical system X% = (F, G, -)

admits the structure of a X[z]-module.

PROOF. By definition (see (1.10)), X = K* is already a

K-vector space. We make it into a K[z]-module by defining
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(k.13) «: Kz] xx* 5 k% (m, x) » m(F)x.

(4.14) COMMENT. The construction used in the proof of (%.12) ié

the classical trickof studying the properties of a fixed linear map

P B B via the K[z]-module structure that F induces on

- by (4.13). In view of the canonical construction of Zf provided by

Proposition (3.16), the state set X can be treated as a K[z]-

module irrespective as to whether X 1is constructed from £ (X = Xf)

or given a priori as part of the specification of I (X = XZ)‘

Thus

the X[z]-module structure on X is a nice way of uniting the "external"

and the "internal" definitions of a dynamical system. Henceforth we

shall talk about a (discrete-time, linear, constant dynamical) system

Y somevhat imprecisely via properties of its associated K[ z]-module Xi.

We shall now give some examples of using module-theoretic language

to express standard facts encountered before.

(4.15) PROPOSITION. If X is the state-module of X, the map

FZ is given by X —» X: X B z°X.

PROOF. This is obvious from (4.13) if X = X,
then we find that, by (1.17),

x(1) Fx(0) + G(0),

= FlE]. + cw(0);

£

since x(0) results from input £, x(1) results from input

‘z+& + w(0)
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and we get

[z-& + w(O)]f,

n

z-[£] + [(0) ],

z-[g]f + Gw(0).
So the assertion is again verified. O
Now we can replace Proposition (2.14%) by the much more elegant

(4.16) PROPOSITION. A system X = (F, G, -) is completely reachable

if and only if the columrs of ‘G generate XZ'

PROOF. The claim is that complete reachability is equiva-

lent to the fact that every element x € XZ "is expressible as

B

X = T8 Ty € K[z], G = [gl, ok By gm].
In view of (4.15), this is the same as requiring that x be expressible
as

m
s

this last condition is equivalent to complete reachability by (2.14). O

(h.17) COROLLARY. The reachable states of X are precisely

those of the submodule of X, generated by (the columns of) G.

(4.18) REMARK. The statement that "X is not completely reachable"
simply means that X 1is not generated by those vectors which make up

the matrix G in the specification of the input side of the system Z.
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It does not follow that X cannot be finitely generated by some other
vectors. In fact, to avoid unnecessary generality, we shall henceforth

assume that

X is always finitely generated over K[z].

From the system-theoretic point of view, the case when we need
infinitely many generators, that is, infinitely many input channels,

seems rather bizzare at present.

(4.19) PROPOSITION. The system X, is completely reachable.

PROOF. Obvious from the notation: a state x = [E]f

is reached by £ € Q. O

(4.20) PROPOSITION. The system Xf is completely observable.

PROOF. Obvious from Lemma (h) above: n([w]f) = f(w) =0
iff o€ [O]f, which says that the only unobservable state of X,

% € i O
is O Xf

Let us generalize the last regult to obtain a module-theoretic criterion
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